
UCRL-ID-148375

The Computational
Complexity of the
Minimum Degree
Algorithm

P. Heggernes, S. Eisenstat, G. Kumfett, and A. Pothen

December 1 2001

US. Department of Energy

Laboratory

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at http:/ /www.doc.nov/bridne

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail. orders@ntis.fedworld.gov -
Online ordering: hm:/ /www.ntis.gov/orderinp..htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http:/ /www.llnl.gov/ tid/Library.html

mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.llnl.gov

NASNCR-200 1-21 1421
ICASE Report No. 2001-L 2

The Computational Complexity of the Minimum
Degree Algorithm
P. Heggernes
University of Bergen, Bergen, Norway

S. C. Eisenstat
Yale University, New Haven, Connecticut

G. Kumfert
Lawrence Livermore National Laboratory, Livermore, California

A. Pothen
Old Dominion University, Norjiolk, Virginia

ICASE
NASA Langley Research Center, Hampton, Virginia
Operated by Universities Space Research Association

National Aeronautics and
S p a c e Administration

Langley Research Center
Hampton, Virginia 23681 -21 99

Prepared for Langley Research Center
under Contract NAS 1-97046

December 200 1

~

I

THE COMPUTATIONAL COMPLEXITY OF
THE MINIMUM DEGREE ALGORITHM *

P. HEGGERNES~, s. c. EISENSTAT~, G. KUMFERT~, AND A. POT HEN^

Abstract. The Minimum Degree algorithm, one of the classical algorithms of sparse matrix computa-
tions, is widely used to order graphs to reduce the work and storage needed to solve sparse systems of linear
equations. There has been extensive research involving practical implementations of this algorithm over
the past two decades. However, little has been done to establish theoretical bounds on the computational
complexity of these implementations. We study the Minimum Degree algorithm, and prove time complexity
bounds for its widely used variants.

Key words. sparse matrix ordering, minimum degree algorithm, graph algorithms, computational
complexity

Subject classification. Computer Science

1. Introduction and motivation. One of the most famous and well studied problems of graph theory
is the problem of adding as few edges as possible to a given graph so that the resulting graph is chordal.
This is called the minimum fill problem, and it has applications in many areas within computer science,
especially in sparse matrix computations [6, 12, 13, 14, 151. As the minimum fill problem is NP-hard [17],
several heuristics have been proposed to find low fill. One of the most famous and widely used of these
heuristics is the Minimum Degree (MD) algorithm [7, 11, 161.

One rigid requirement of a practical MD implementation is that its space complexity should be linear in
the size of the input graph. Several algorithmic variants of the MD algorithm have been developed since it
was first proposed in 1957, and these enhancements reduce the running time of the algorithm or reduce the
fill generated by the ordering. However, the theoretical time complexity of the practical MD algorithm has
never been established. Now that the increasing power of modern microprocessors enable us to order very
large graphs (with millions of vertices), the asymptotic bounds obtained from the theoretical analysis could
be met on some large worst-case examples. Our aim in this paper is to study the MD algorithm, explaining
the steps in its modern implementation, and to give a theoretical time bound on its running time. We will
also show with an example that the time bound presented is tight on general graphs.

This paper is organized as follows: We provide the necessary graph theoretical background in Section
2. In Section 3, the various MD algorithms are described and their time complexity is analyzed, along with
examples on which the bounds are attained. We conclude in Section 4.

*This work was supported by the National Science Foundation grant DMS-9807172, by the Department of Energy under
subcontract B347882 from the Lawrence Livermore National Laboratory, and by NASA under contract NAS1-97046 while the
last author was in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681-2199. This research was initiated
while the first author was visiting Old Dominion University in June 2000.

t Department of Informatics, University of Bergen, NO-5020 Bergen, Norway. pinar . heggernesoii .uib .no
$Department of Computer Science, Yale University, New Haven, C T 06520-2825 USA. Stanley. eisenstatoyale . edu
5 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, CA 94551-0808 USA. kumfertollnl . gov
TDepartment of Computer Science, Old Dominion University, Norfolk, VA 23529-0162 USA. pothenocs . odu. edu; Computer

Science Research Institute, Sandia National Laboratories, M S 1110, Albuquerque NM 87185-1110 USA apothen@sandia.gov;
and ICASE, NASA Langley Research Center, Hampton, VA 23681-2199 USA. pothenoicase . edu.

1

2. Graph elimination and fill. A graph G = (V,E) consists of a set V of vertices (or nodes), and a
set E s V x V of edges. Vertices u and v are adjacent, or neighbors, if (u,v) is an edge in E. An ordering
a : V ++ {1,2, .-., n} of G is a permutation, or a numbering, of its vertices; here n E !VI. The graph G
ordered by Q is denoted by G,, however we will omit the subscript when the ordering is clear from the
context. If the vertices of G are ordered already, we will write V = {1,2, ..., n}. The set of vertices adjacent
to a vertex i in G, is denoted by a d j ~ (i) . The degree of i in G is d ~ (i) = l~dj~(i)l. For a set of vertices
X c V, ad j (X) = UiEayadj(i) - X , and the external degree of X is ladj(X)I. A set K of vertices is an
independent set if no pair of vertices in K is adjacent. A set C of vertices is a clique if every pair of vertices
in C is adjacent.

A chord in a cycle is an edge that connects two non-consecutive vertices of the cycle. A graph is chordal
if every cycle with more than three edges contains a chord.

2.1. Elimination graph model. A graph model of the Cholesky factorization of a sparse matrix A is
given in the algorithm [12] shown in Figure 2.1. This algorithm is often referred to as the elimination game.

Go = G;
for i = 1 to n do

Add edges as necessary to make all neighbors of vertex i in Gi-1 painvise adjacent;
Remove the vertex i and all edges incident to i;
Denote the resulting graph by Gi;

FIG. 2.1. The elimination game.

The input to the elimination game is G = G(A). Before elimination, we assume an ordering on the
vertices of G. At each step i, the neighborhood of vertex i is turned into a clique, and i is deleted from the
graph. This is referred to as eliminating vertex i, and the graphs Gi = ({i+l, ..., n}, EJ are called elimination
graphs. (The set Ei contains the edges in the i th elimination graph Gi.) The filled graph G+ = (V,E+) is
obtained by adding to G all the edges added by the algorithm. Thus E+ = U:ztEi, and the set of f i l l edges
is F = E+ \ E. We will let m = IEI and m+

Fulkerson and Gross [4] showed that the filled graphs resulting from this algorithm are exactly the class
of chordal graphs. Different filled graphs result from processing the vertices of G in different orders. Thus in
order to find a low fill, it is important to find a good order on the vertices of the given graph before running
elimination game. Finding an ordering that results in the minimum fill is an NP-hard problem [17].

IE+I.

2.2. The minimum degree idea. The minimum degree idea aims to minimize fill locally at each step
i of the elimination game by choosing to eliminate a vertex with the minimum degree in the elimination
graph Gi-1. The algorithm starts by assuming that there is no numbering on the vertices, and chooses a
vertex in G with the minimum degree to be numbered and e l i i a t e d fist. At each following step i, a
vertex of minimum degree in Gi-1 is chosen as vertex i and eliminated, and ties are broken arbitrarily. This
is clearly a greedy algorithm, with no guarantees on the quality of the resulting ordering. However, the
orderings produced by minimum degree are surprisingly good with respect to fill in practice.

The time complexity of this approach is definitely O(nm+), since all degrees in Gi-1 can be computed
in O(m+) time at each step i. However, this requires O(n + m+) space, violating the O(n + m) space
requirement.

2.3. Supernodes. In a graph G, two adjacent vertices u and 21 are said to be indistinguishable if
adj(u) U (u} = adj(v) U (v}. Clearly, if u and 21 are indistinguishable then they have the same degree, and

2

0

1 1-N reach (2) = (4 6)

8 reach(4,5,6)= [}

FIG. 2.2. The elimination process illustrated with elimination graphs (column on the left) and quotient graphs (column on
the right).

if one of them, say u, is eliminated, no new fill edges joining w to any other neighbor of u are created. The
degree of w will decrease by one (to reflect the elimination of u) in the remaining graph. Thus if one of
them is among the vertices with minimum degree, then they both are, and after the elimination of one,
the other will continue to be among the vertices with minimum degree in the next elimination graph. For
this reason, both vertices could be eliminated at the same step, and numbered consecutively in a minimum
degree ordering.

It is shown in [6] that two vertices that become indistinguishable at one step of the elimination game
remain indistinguishable for the rest of the algorithm. In addition, they can be eliminated together whenever
one of them is chosen for elimination [7]. Thus for purposes of the MD algorithm, the two vertices can be
merged into a supernode and treated as one vertex for the remainder of the algorithm. This is called mass
elimination in MD implementations.

At the beginning of the algorithm, all vertices are supernodes of size one. Then during the algorithm,
indistinguishable supernodes are merged together as they are detected. It is common to use the external
degrees of supernodes [lo]: the external degree of a supernode is the number of vertices adjacent to it that
belong to other supernodes. The weight of a supernode is the number of vertices that are absorbed in it.

2.4. Quotient graph model. In the elimination graph model, the graph shrinks by one vertex at each
step, but it might grow by many edges, and thus require significantly more space than the original graph.
Quotient graphs [5] enable the ordering algorithm to use space bounded by the size of the original graph
(O (n + m) space), and are used in all modern implementations of IvID.

The quotient graph G consists of two types of nodes: snodes and enodes. Initially, Go is identical to

3

the elimination graph GO and consists of only snodes (supernodes). When an snode is eliminated, it is
not removed from the quotient graph, but it becomes an enode (eliminated supernode). In Figure 2.2,
an example of the elimination is shown with both elimination graph and quotient graph representations.
The snodes are drawn as circles, and enodes are drawn as squares. The adjacency set of an snode in the
quotient graph is divided into its s-adjacency and its e-adjacency. The set of snodes adjacent to an snode r
is denoted by s a d j (r) , and the set of enodes adjacent to r is denoted by eadj (r) . Thus in the quotient graph,
a d j (r) = sadj (r) u eadj(r) .

The reachable set of an snode r , r e a c h (r) , is the union of its s-adjacency and the snodes that it can reach
through paths consisting of only enodes, and thus it corresponds to the neighbors in the elimination graph:
reachg,(r) = adjG,(r). Consequently, to determine the next vertex to eliminate in MD, the sizes of the
reachable sets of all candidate snodes must be computed. In order to make this more efficient, neighboring
enodes are merged together so that a path consisting of only enodes is now shortened to one enode. Hence,
reach(r) = sadj (r) U (UeEeadj(r)Sadj(e)).

When an snode r is eliminated, r and all the enodes that are neighbors of r are merged into one enode.
If r does not have any neighboring enodes then it becomes an enode by itself. The elimination of r could
cause changes in the adjacency sets of other snodes as well. If two snodes become indistinguishable, they
are merged together. If two adjacent snodes r and s have an enode e as a neighbor, then the edge joining r
and s can be deleted from the quotient graph since it is redundant. (The snodes r and s are adjacent in the
elimination graph since they are reachable from each other through e in the quotient graph.) This process is
illustrated in Figure 2.2. The numbers in the middle indicate step k of the elimination process. The graphs
on the left side represent the elimination graphs Gk, and the ones on the right side represent the quotient
graphs G k for each k.

3. Minimum Degree algorithms in detail. In the previous section, we introduced the idea of
the minimum degree algorithm by considering the elimination of a single vertex in an elimination graph.
However, practical implementations use the quotient graph data structure, and eliminate supernodes. In this
section we present detailed algorithmic descriptions of several MD algorithms; all these are based modern
implementations based on quotient graphs and use the tools described in Section 2.4. Since we use the
external degree of a supernode, the computed ordering might not in some cases correspond to a strict
minimum degree ordering. However, the use of external degree tends to give better results than exact
degree in practice [lo]. Kumfert and Pothen [3, 8, 91 provide an algorithmic laboratory for object-oriented
implementations of several variants of minimum degree algorithms.

3.1. Original Minimum Degree. The original MD algorithm, enhanced by the techniques mentioned
in Section 2.4, is presented in Figure 3.1. We only discuss the details of the most time consuming steps.

Asymptotically, the costliest operation in MD is the degree update. After a vertex has been eliminated,
the graph changes, and the degrees of the remaining nodes have to be recomputed in order to choose a
vertex of minimum degree. Thinking in elimination graph terms, it is easy to see that only the neighbors
of the eliminated vertex need to have their degrees recomputed. In the quotient graph, this corresponds to
reachg,-l(uk), where U k is the supernode eliminated at step k. Thus we need to compute the reachable
set of the snode to be eliminated. After the elimination, the snodes in the reachable set examine their own
reachable sets to find their new degrees. These two steps correspond to the major steps in the MD algorithm
described in Fig. 3.1.

We now study the time complexity of the MD algorithm given in Figure 3.1. Let np denote the total
number of supernodes eliminated. At each step k, when snode Uk is to be eliminated in &-I, the following

4

Go = G;
Compute initial supernodes and their weights;
Compute initial degrees;
mark = 0; k = 0; t = 0;
while there are snodes in Gk do

k = k + 1 ;
choose u k to be an snode of minimum degree;
replace snode u k with enode u k ;

{ 1. Find the reachable set of u k }
t = t + 1; mark(uk) = co; reach = {};
{ la. Include snodes adjacent to u k in reachable set }
for each snode T E s a d ! (u k) do

{lb. Process enodes adjacent to u k and include snodes adjacent to them in the reachable set }
for each enode e E eadj(uk) with mark(e) < t do

mark(r) = t; reach = reach u r;

mark (e) = t; Merge u k and e;
for each mode r E sadj(e) with mark(r) < t do

mark(r) = t ; reach = reach u r;

Detect new supernodes;
Form updated quotient graph G k ;

(2. Update the degrees of snodes in the reachable set of u k }
for each snode T E reach do

t = t + 1; mark(r) = t; degree(r) = 0;
(2a. Examine snodes adjacent to r }
for each snode s E sadj(r) do

(2b. Examine enodes adjacent to r and snodes adjacent to the enodes }
for each enode e E eadj(r) with mark(e) < t do

mark(s) = t; degree(r) = degree(r) + weight(s);

mark (e) = t;
for each mode s E sadj(e) with mark(s) < t do

mark(s) = t ;
degree(r) = degree(r) + weight(s);

n, = k ;

FIG. 3.1. The MD algorithm.

steps are performed:

1. The enodes adjacent to u k are merged into u k .

2. The snodes adjacent to u k and the snodes adjacent to the enodes merged with U k are included in
the reachable set. Note that each snode appears once in the reachable set since we mark the snodes
when they are reached the first time. The computed reachable set is equal to reachg,-, (uk).

3. For each snode T in the reachable set, we count each of its neighboring snodes s and each of its
neighboring enodes e in Gk-1 exactly once.

4. Finally, for each enode e that we reach in this fashion, the s-adjacency of e is also examined. This is
done exactly once for each enode e in the e-adjacency of each snode T in the reachable set. However,
in the worst case, the same enode e can belong to the e-adjacency of every snode T in the reachable
set. Thus the adjacency of e might have to be examined once for every snode in the reachable set.
This is illustrated in Figure 3.2.

5

FIG. 3.2. The local graphs searched by (a) the MD and MMD algorithms, and (b) the AMD algorithm. The node Uk is the
current mode being eliminated; it becomes an enode in this step. The square nodes denote enodes, the hatched circles denote
snodes in the reachable set of Uk? and the open circles denote additional snodes ezamined to update the degrees of the snodes
in the reachable set. The thick lines represent edges that might be traversed several times at each step.

As a consequence, the number of edges examined during a run of the algorithm is expressed as follows:

All sets appearing in this expression should have subscript Gk-1 since we are considering adjacencies in this
quotient graph.

Proof: Resolving the above sum term by term, the adjacencies of all the nodes in the graph is O(m). The
sum of the s-adjacencies of the enodes examined at a step is also O(m). The reach set is bounded by O(n);
and the number of edges examined when considering the s-adjacencies of the reach sets is O(m). Thus the
running time of MD is O(n(m + (nm))) = O(n2m). 0

THEOREM 3.1. The running time of MD i s O(n2m).

Depending on the graph and the snodes, np might be quite smaller than n, making the given theoretical
bound too pessimistic. The graph needs also to be quite dense to meet the given bound, and as we get more
and more cliques new supernodes wil l probably be formed, decreasing np. However, we will show at the end
of this section that the given bound is tight by showing a simple graph that meets the given bound.

3.2. Multiple Minimum Degree. The Multiple Minimum Degree (MMD) algorithm, an improve-
ment over the MD algorithm, was proposed by Liu [lo]. Consider an independent set K of vertices. The
elimination of a vertex in K cannot change the degree of any other vertex in this set, since no two vertices in
K are adjacent. If we include only vertices of minimum degree in K , then clearly after the elimination of any
vertex in K , the other vertices of K will still be among the minimum degree vertices at the next elimination
step. The idea of the MMD algorithm is to e l i i a t e a maximal independent set of minimum degree vertices
before doing a degree update. At each step i of the algorithm, an independent set Ki of minimum degree
vertices are found. These are eliminated and vertices adjacent to them are marked as vertices whose degrees
need to be updated. The degrees of all the marked vertices are updated only after all the vertices in Ki are
eliminated. In the quotient graph model, the set of snodes whose degrees need to be updated is the union
of the reachability sets of the snodes in Ki. If these reachability sets have snodes in common, fewer degree
updates would be needed than in the MD algorithm.

When the MMD idea is implemented with supernodes instead of single vertices, the degrees might
become slightly inaccurate. Since we use external degrees for supernodes, eliminating a large supernode in
the independent set K might actually cause an snode outside of K to acquire an external degree lower than

6

Go = G;
Compute initial supernodes and their weights;
Compute initial degrees;
mark = 0; i = 0; t = 0;
while there are snodes in 8, do

i = i + 1 ;
Choose K, to be an independent set of snodes of minimum degree;
t = t + 1; update = (1;
(1. Eliminate snodes in K,;}
{ update is the union of the reachability sets of these snodes. }
for each snode k E K, do

mark(k) = a;
for each snode r E sadj(k) do

for each enode e E eadj(k) with mark(e) < t do
m a r k (r) = t ; update = update U r;

mark (e) = t ;
for each snode T E sadj(e) with m a r k (r) < t do

mark(r) = t; update = update U r ;
(2. Update quotient graph after eliminating snodes in K,.}
for each snode k E Ki do

Replace snode k with enode k ;
Merge k and eadj(k) to one enode;

Detect new supernodes;
Form 4,;
(3. Compute degrees of each snode in the update set.}
for each snode r E update do

t = t + 1; mark(r) = t ; degree(r) = 0;

for each snode s E sad?(?-) do

for each enode e E eadj(r) with mark(e) < t do
mark(s) = t ; degree(r) = degree(r) + weight(s);

mark (e) = t ;
for each snode s E sadj(e) with mark(s) < t do

mark(s) = t; degree(r) = degree(r) + weight(s);
nh = i;

FIG. 3.3. The M M D algorithm.

any of the other snodes in K . In this case, eliminating all the snodes of K before other snodes of possibly
lower degree will generate a slightly perturbed minimum degree ordering. However, in practice the quality
of the orderings from the MMD algorithm is usually slightly better than orderings from the MD algorithm
with respect to fill.

If all the independent sets are of size one, then the work of MMD is equal to that of MD. The difference
is that degree update is done less frequently when the independent sets are not just singletons. Let Xi be
the set of independent supernodes that are eliminated at step i, and let nh be the total number of steps.
For each snode k E Ki, we will do the same work as for each Uk in the MD algorithm to find Teach(uk).
However, the degree update is performed on all the snodes of reach(&) at the same step i . Adding up the
operations of the algorithm in a straight forward manner, we get:

THEOREM 3.2. The running time of MMD is O (n 2 m) .

7

Proof: The analysis is similar to the MD algorithm. At most O(n) snodes can be in the total reachable set,
and thus the time complexity of MMD is also O(n(m + (nm))) = O(n2m). I7

For the MMD algorithm, the gap between nh and n is even larger. Thus we can expect better performance
of MMD than the given bound on average. However, the example at the end of this section shows that the
given bound is tight.

3.3. Approximate Minimum Degree. Like MD, and unlike MMD, the Approximate Minimum De-
gree (AMD) algorithm is a single elimination algorithm; hence the degree and graph updates are performed
after a single supernode is eliminated. The idea of the AMD algorithm is to compute an upper bound
on the degrees inexpensively instead of computing the exact degrees, and to use this upper bound as an
approximation to the degree for choosing supernodes to eliminate.

Let us define the weight of an snode to be the number of nodes in the original graph Go that are members
of the supernode. We also define the weight of an enode e to be the sum of the weights of the snodes adjacent
to it in the current quotient graph, Le., weight(e) = CsEsadj(e) weight(s). Let T be an snode whose degree
is to be updated. The degree of r cannot be greater than the sum of the weights of all the snodes and the
enodes adjacent to it in the current quotient graph. AMD uses this upper bound as an approximation for
the degree of r . However, the s-adjacency sets of the enodes in eadj(r) might overlap, making the bound
too loose, and causing a large gap between the real degree and the approximated degree bound of r. This
gap can be reduced by computing a quantity diff(e) associated with each enode [l, 21 to remove some of the
overlap in the adjacency sets.

Let U k denote the snode that is eliminated at step k. It is then merged with all of its &neighbors, and
the weight of the new giant enode U k in the quotient graph & becomes the s u m of the weights of all the
snodes T E reachpk-, (U k) :

weight(uk) = weight(r).
rcreachpk-l (U k)

Since each snode r in the reachability set above is a neighbor of enode 'Llk in & , the value weight(uk) will be
added to the approximate degree of r . Therefore, for all the other enodes e E eadj(r) where e # U k , to prevent
double counting, we should include in weight(e) only the contribution from the weights of the snodes disjoint
from those in the reachability set; i.e, we should sum only the weights of snodes s E sadj(e) \ reachg,-, (uk)
instead of summing the weights of all snodes in sadj(e).

We define a diff function for enodes e E eadj(reachg,-, (U k)) in the quotient graph G k as

The approximate degree of r E reachg,-, (U k) can be then computed from:

adegree(r) = weight(uk) + weight(s) + di f (e) .
sEsadj (r) eEeadj(reach(uh))

The AMD algorithm is described in Figure 3.4. The local graph that is searched is shown in Fig. 3.2.
Note that now each edge in this local graph is examined at most twice, once from each of its endpoints.

Because of the increased difliculty of finding the set intersections, multiple elimination is usually not
implemented in AMD. Without the multiple elimination, the total number of steps in the AMD algorithm
is:

8

Po = G;
Compute initial supernodes and their weights;
for each snode T E So do

sdegree(r) = 0;
for each mode s E sadj(r) do

sdegree(r) = sdegree(r) + weight(s);
mark = 0; k = 0; t = 0;
while there are snodes in G k do

k = k + l ;
(1. Eliminate an snode U k and compute its reachable set.}
choose 2Lk to be an snode of minimum approximate degree;
kweight = weight(uk);
replace snode u k with enode U k ;

reach = {}; weight(uk) = 0;
{la. Include snodes adjacent to u k in the reachable set}
for each snode r E s a d j (u k) do

t = t + 1; mark(ur;) = co;

mark(r) = t; reach = reach u r;
weight(uk) = weight(uk) + weight(r);
sdegree(r) = sdegree(r) - kweight;

(lb. Include snodes that are neighbors of enodes adjacent to u k in the reachable set }
for each enode e E eadj(uk) with mark(e) < t do

mark(e) = t;
for each snode T E sadj(e) with mark(?-) < t do

mark(r) = t ; reach = reach u r;
wezght(uk) = weight(uk) + weight(r);

Let Uk absorb e ,
Detect new supernodes; Form S k ; t = t + 1;
(2a. Compute dzfl(e) for enodes adjacent to snodes in the reachability set.}
for each snode r E reach do

for each enode e E eadj(r), e # U k do
if mark(e) < t then

else
& f i e) = weight(e) - weight(r); mark (e) = t ;

d i f i e) = difl(e) - weight(r);
(2b. Compute approximate degrees for snodes in the reachability set.}
for each snode r E reach do

adegree(r) = sdegree(r) + weight(uk) - weight(r);
for each enode e E eadj(r), e # u k do

adegree(r) = adegree(r) + difl(e);
np = k;

FIG. 3.4. The A M D algorithm.

THEOREM 3.3. The running time of AMD is O(nm) .
Proof: In the expression above, the sum of the second and third terms is O(m) . Hence the complexity is
O(n(m + m)) = O(nm). CI

For AMD, Amestoy, Davis, and Duff [l] have shown a tighter time complexity of O(m+) on bounded

9

degree graphs, when quotient graphs are employed to satisfy the O(n + m) space bound.

3.4. Examples that meet the bounds. Consider the following graph on 8k + 1 vertices (shown in
Figure 3.5 for k = 1): There are 4k “outer” vertices 21,. . . , X4k, 4k “inner” vertices y1,. -. , y4k, a “hub”
vertex z, an edge between each zi and each yj with li - j l # 2k, and an edge between each yj and z.

FIG. 3.5. An example o n which MD requires 0(n2m) time.

Clearly MD eliminates the 4k outer vertices first and, with the right tie-breaking strategy, does so
in the order z1 , . . . , z4k. At the time that each of the k outer vertices zk+l , . . . , z 2 k is eliminated, it is
distinguishable and adjacent to at least k distinguishable inner vertices (including y1,. . - , yk). Each of these
inner vertices is adjacent to at least k unmerged enodes (including z1 , . - . , zk) , and each of these enodes is
adjacent to at least k distinguishable inner vertices (including y1,. . . ,yk). Thus the total work to update
degrees while eliminating these outer vertices is n(k4). Consequently, MD requires O(n2m) time on this
example since n = 8k + 1 and e = 4k2. By the same arguments, AMD requires Q(k3) = Q(nm) time on the
same example.

An example for MMD is slightly more complicated. Beginning with the graph above, add a clique with
4k vertices q, . . . , c4k, add edges between zi and q, . . . , ci-1 for each i, add edges between each yj and each
q, and add edges between z and each q. Then MMD first eliminates the outer vertices one at a t i m e in the
same order as above, so the work is again 0(k4), resulting in O(n2m) time.

4. Conclusions. We have given a thorough analysis of the MD algorithm together with its variants
MMD and AMD. Based on quotient graph implementations and O(n + m) space requirement, we have
established an O(n2m) time bound for MD and MMD, and an O(nm) bound for AMD. Note that these
bounds are for nearly dense graphs. Fortunately, these bounds are not often observed for problems that are
solved in practice. A further development of this work is to identify graph classes with provably better MD
time complexities.

Acknowledgments. We thank Prof. Tim Davis of the University of Florida for helpful comments and
useful discussions.

REFERENCES

[l] P. AMESTOY, T. A. DAVIS, AND I. S. DUFF, An approximate minimum degree ordering algorithm,

[2] T. A. DAVIS AND I. S. DUFF, An unsymmetric-pattern multifrontal method f o r sparse LU factorization,
SIAM J. Matrix Anal. Appl., 17 (1996), pp. 886-905.

SIAM J. Matrix Anal. Appl., 18 (1996), pp. 140-158.

10

[3] F. DOBRIAN, G. KUMFERT, AND A. POTHEN, The design of sparse direct solvers using object-oriented
design, in Advances in Software Tools for Scientific Computing, Lecture Notes in Computational
Science and Engineering, H. P. Langtangen et al., ed., vol. 10, Springer Verlag, 2000, pp- 89-131.

[4] D. R. FULKERSON AND 0. A. GROSS, Incidence matrices and interval graphs, Pacific J. Math., 15

[5] J. A. GEORGE AND J . W. H. LIU, A quotient graph model f o r symmetric factorization, in Sparse Matrix
Proceedings 1978, I. S. Duff and G. W. Stewart, eds., SIAM Publications, 1978, pp. 154-175.

[61 - , Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall Inc., Englewood
Cliffs, New Jersey, 1981.

[71 - , The evolution of the minimum degree ordering algorithm, SIAM Review, 31 (1989), pp- 1-19.
[8] G. KUMFERT, An Object-Oriented Algorithmic Laboratory for Ordering Sparse Matrices, PhD thesis,

Computer Science Department, Old Dominion University, Norfolk VA 23529 USA, 2000.
[9] G. KUMFERT AND A. POTHEN, An object-oriented collection of minimum degree algorithms: design,

implementation, and experiences, in Computing in Object-oriented Parallel Environments, D. Car-
omel et al., ed., Springer Verlag, 1998, pp. 95-106.

[lo] J. W. H. LIU, Modification of the minimum degree algorithm by multiple elimination, ACM Trans.
Math. Software, 11 (1985), pp. 141-153.

[ll] H. M. MARKOWITZ, The elimination form of the inverse and i ts application t o linear programming,
Management Science, 3 (1957), pp. 255-269.

[12] S. PARTER, The use of linear graphs in Gauss elimination, SIAM Review, 3 (1961), pp. 119-130.
[13] D. J. ROSE, A graph-theoretic study of the numerical solution of sparse positive definite systems of

linear equations, in Graph Theory and Computing, R. C. Read, ed., Academic Press, New York,

[14] D. J. ROSE, R. E. TARJAN, AND G. S. LUEKER, Algorithmic aspects of vertex elimination on graphs,

[15] R. E. TARJAN, Graph theory and Gaussian elimination, in Sparse Matrix Computations, J. R. Bunch

[16] w. F. TINNEY AND J. W. WALKER, Direct solutions of sparse network equations by optimally ordered

[17] M. YANNAKAKIS, Computing the minimum fill-in is NP-complete, SIAM J. Alg. Disc. Meth., 2 (1981),

(1965), pp. 835-855.

1972, pp. 183-217.

SIAM J. Comput., 5 (1976), pp. 266-283.

and D. J. Rose, eds., Academic Press, 1976, pp. 3 - 22.

triangular factorization, Proceedings of the IEEE, 55 (1967), pp. 1801-1809.

pp. 77-79.

This work was performed under the auspices of the U.S. Department of Energy by the University
of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

11

